NOTICE to COMMISSIONING DEALER
Pre-delivery Preparation Instructions Must Be Performed Before Delivering Boat to the Product Owner.

NOTICE to INSTALLER
After Completing Installation, These Instructions Should Be Placed with the Product for the Owner’s Future Use.

NOTICE to INSTALLER
The United States Coast Guard does not have a method to determine the maximum recommended horsepower for Inboard Jet Boats. Therefore, it is the responsibility of the boat manufacturer to install the Mercury Jet Drive, as well as any other Jet Drive model, in a boat which has been determined to be of suitable size, weight, construction, and hull configuration for the power chosen. The Mercury Jet Drive, in particular, brings a new level of performance to the jet boat category and is capable of propelling many hulls at speeds exceeding 50 miles per hour.

In selecting the proper Jet Drive package for a particular application, please consider the overall performance capability of the craft. Your boat may react to and handle differently with each Jet Drive model. **PLEASE carefully test and evaluate the overall handling characteristics of the boat package before distribution for sale.**

If you have application or installation questions, please contact your Mercury Marine OEM Sales Coordinator. The Sales Coordinator will arrange to provide the necessary assistance.

Please assess your boat’s performance completely before making the Jet Drive model selection. **Safe boating is good for everyone.**

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>Notice to Installer</td>
<td>2</td>
</tr>
<tr>
<td>Torque Specifications</td>
<td>3</td>
</tr>
<tr>
<td>Installation Requirements</td>
<td>3</td>
</tr>
<tr>
<td>Battery/Battery Cables</td>
<td>3</td>
</tr>
<tr>
<td>Boat Construction</td>
<td>4</td>
</tr>
<tr>
<td>Engine Compartment Ventilation</td>
<td>4</td>
</tr>
<tr>
<td>Exhaust System</td>
<td>4</td>
</tr>
<tr>
<td>Fuel Delivery System</td>
<td>5</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>6</td>
</tr>
<tr>
<td>Wiring Diagrams</td>
<td>7</td>
</tr>
<tr>
<td>Quicksilver Instrumentation, Typical Analog Installation Shown</td>
<td>7</td>
</tr>
<tr>
<td>Typical System Layouts –</td>
<td>8</td>
</tr>
<tr>
<td>Single Engine Product Configurations</td>
<td>8</td>
</tr>
<tr>
<td>SmartCraft Speedometer and Tachometer</td>
<td>8</td>
</tr>
<tr>
<td>SmartCraft System Monitor –</td>
<td>8</td>
</tr>
<tr>
<td>Model Year 2001 and Newer</td>
<td>8</td>
</tr>
<tr>
<td>Remote Control and Cables</td>
<td>9</td>
</tr>
<tr>
<td>Mercury Jet Drive Hull Dimensions</td>
<td>10</td>
</tr>
<tr>
<td>Steering Helm and Cable</td>
<td>11</td>
</tr>
<tr>
<td>Installing Jet Pump</td>
<td>12</td>
</tr>
<tr>
<td>Hull Cutout</td>
<td>12</td>
</tr>
<tr>
<td>Steering Cable Adjustment</td>
<td>16</td>
</tr>
<tr>
<td>Shift Cable Adjustment</td>
<td>19</td>
</tr>
<tr>
<td>Bilge Siphon Feature</td>
<td>22</td>
</tr>
<tr>
<td>Installing Bilge Siphon</td>
<td>22</td>
</tr>
<tr>
<td>Water By-Pass System</td>
<td>23</td>
</tr>
<tr>
<td>Installation of Flushing Kit</td>
<td>25</td>
</tr>
<tr>
<td>Operation Instructions</td>
<td>26</td>
</tr>
<tr>
<td>Suggested Flushing Intervals</td>
<td>27</td>
</tr>
<tr>
<td>Installing Powerhead</td>
<td>28</td>
</tr>
<tr>
<td>Battery Cables and Remote Harness</td>
<td>30</td>
</tr>
<tr>
<td>Throttle Cable</td>
<td>33</td>
</tr>
<tr>
<td>Installation</td>
<td>33</td>
</tr>
<tr>
<td>Oil Injection Set-Up</td>
<td>34</td>
</tr>
<tr>
<td>Trim Plate Adjustment</td>
<td>38</td>
</tr>
<tr>
<td>Exhaust System Installation</td>
<td>39</td>
</tr>
<tr>
<td>General Exhaust System Notes</td>
<td>39</td>
</tr>
<tr>
<td>Exhaust Outlet Measurement Procedure</td>
<td>39</td>
</tr>
<tr>
<td>Top View</td>
<td>40</td>
</tr>
<tr>
<td>Aft View</td>
<td>41</td>
</tr>
<tr>
<td>Side View</td>
<td>42</td>
</tr>
<tr>
<td>Side View of Expansion Chamber Outlet</td>
<td>43</td>
</tr>
<tr>
<td>Pipe and Exhaust Pipe Connection</td>
<td>43</td>
</tr>
<tr>
<td>Pre-delivery Inspection</td>
<td>44</td>
</tr>
</tbody>
</table>
General Information

Notice to Installer

Throughout this publication, Warnings and Cautions (accompanied by the International Hazard Symbol) are used to alert the installer to special instructions concerning a particular service or operation that may be hazardous if performed incorrectly or carelessly. — Observe Them Carefully!

These “Safety Alerts,” alone, cannot eliminate the hazards that they signal. Strict compliance to these special instructions when performing the service, plus common sense operation, are major accident prevention measures.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazards or unsafe practices which COULD result in severe personal injury or death.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazards or unsafe practices which could result in minor personal injury or product or property damage.</td>
</tr>
</tbody>
</table>

IMPORTANT: Indicates information or instructions that are necessary for proper installation and/or operation.

This installation manual has been written and published by the service department of Mercury Marine to aid installers when installing the products described herein.

It is assumed that these personnel are familiar with the installation procedures of these products, or like or similar products manufactured and marketed by Mercury Marine. Also, that they have been trained in the recommended installation procedures of these products which includes the use of mechanics’ common hand tools and the special Mercury Marine or recommended tools from other suppliers.

We could not possibly know of and advise the marine trade of all conceivable procedures by which an installation might be performed and of the possible hazards and/or results of each method. We have not undertaken any such wide evaluation. Therefore, anyone who uses an installation procedure and/or tool, which is not recommended by the manufacturer, first must completely satisfy himself that neither his nor the product’s safety will be endangered by the installation procedure selected.

All information, illustrations, and specifications contained in this manual are based on the latest product information available at time of publication. As required, revisions to this manual will be sent to all OEM boat companies.
Torque Specifications

NOTE: Tighten all fasteners, not listed, securely.

10 mm Fasteners
(Powerhead to Pump) 47 Nm (35 lb ft)

Reverse Stop Screw 14 Nm (120 lb in.)

Forward Stop Screw 14 Nm (120 lb in.)

Ride Plate-to-Pump Screws 8.5 Nm (75 lb in.)

Pump Cover to Pump Housing Nuts 47 Nm (35 lb ft)

Installation Requirements

IMPORTANT: The M² Jet Drive is considered an INBOARD engine. The boat it is installed in must meet industry standards (ABYC, NMMA, etc.), federal standards and Coast Guard regulations for INBOARD engine installations.

Battery/Battery Cables

IMPORTANT: Boating industry standards (ABYC, NMMA, etc.), federal standards and Coast Guard regulations must be adhered to when installing battery. Be sure battery cable installation meets the pull test requirements and that positive battery terminal is properly insulated in accordance with regulations.

IMPORTANT: Engine electrical system is negative (–) ground. It is recommended (required in some states) that battery be installed in an enclosed case. Refer to regulations for your area.

1. Select a battery that meets all of the following specifications:

FOR OPTIMAX ENGINES –
 a. 12-volt marine type.
 b. 1000 Marine Cranking Amps (MCA) or 750 Cold Cranking Amps (CCA) minimum.
 c. Reserve capacity rating of at least 105 minutes.

FOR Carbureted and EFI ENGINES –
 d. 12-volt marine type.
 e. 670 Marine Cranking Amps (MCA) or 520 Cold Cranking Amps (CCA) minimum.
 f. Reserve capacity rating of at least 100 minutes.

2. Select proper size positive (+) and negative (–) battery cables using chart. Battery should be located as close to engine as possible.

IMPORTANT: Terminals must be soldered to cable ends to ensure good electrical contact. Use electrical grade (resin flux) solder only. Do not use acid flux solder, as it may cause corrosion and a subsequent failure.
Cable Length and Cable Gauge

<table>
<thead>
<tr>
<th>Cable Length</th>
<th>Cable Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1.1 m (3-1/2 ft)</td>
<td>4 (25mm²)</td>
</tr>
<tr>
<td>1.1-1.8 m (3-1/2 - 6 ft)</td>
<td>2 (35mm²)</td>
</tr>
<tr>
<td>1.8-2.3 m (6 - 7-1/2 ft)</td>
<td>1 (50mm²)</td>
</tr>
<tr>
<td>2.3-2.9 m (7-1/2 - 9-1/2 ft)</td>
<td>0 (50mm²)</td>
</tr>
<tr>
<td>2.9-3.7 m (9-1/2 - 12 ft)</td>
<td>00 (70mm²)</td>
</tr>
<tr>
<td>3.7- 4.6 m (12 - 15 ft)</td>
<td>000 (95mm²)</td>
</tr>
<tr>
<td>4.6 - 5.8 m (15 - 19 ft)</td>
<td>0000 (120mm²)</td>
</tr>
</tbody>
</table>

Boat Construction

IMPORTANT: All applicable U.S. Coast Guard regulations for INBOARD engines must be complied with, when constructing engine compartment.

Care must be exercised in the design and construction of the engine compartment. Seams must be located so that any rain water or splash, which may leak through the seams, is directed away from the engine and its air intake. Also, the passenger compartment drainage system should not be routed directly to the engine compartment. **Water that runs on or is splashed in the air intake may enter the engine and cause serious damage to internal engine parts.**

IMPORTANT: Mercury Marine will not honor any warranty claim for engine damage as a result of water entry.

Engine Compartment Ventilation

Engine compartment must be designed to provide a sufficient volume of air for engine breathing and also must vent off any fumes in engine compartment in accordance with industry standards (ABYC, NMMA, etc.), federal standards and U.S. Coast Guard regulations for inboard engines. Pressure differential (outside engine compartment versus inside engine compartment) should not exceed 51 mm (2 in.) of water (measured with a manometer) at maximum air flow rate.

Engine Compartment Specifications

<table>
<thead>
<tr>
<th>Engine Air Requirements at Wide Open Throttle</th>
<th>Physical Engine Volume*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.260 m³/sec. (552 ft³/min.)</td>
<td>40.4 L (1.41 ft³)</td>
</tr>
</tbody>
</table>

*Physical engine volume is used in flotation calculations and is representative of the amount of flotation the engine provides.

For serviceability, it is recommended that an additional 152 mm (6 in.) minimum (per side) of clearance be allowed between powerhead and engine compartment walls.

Exhaust System

IMPORTANT: It is the responsibility of the boat manufacturer, or installing dealer, to properly locate the engine. Improper installation may allow water to enter the expansion chamber and combustion chambers and severely damage the engine. Damage caused by water in the engine will not be covered by Mercury Marine Limited Warranty, unless this damage is the result of defective parts.
The engine must be properly located to ensure that water will not enter the engine through the exhaust system. Determine the correct engine height by taking measurements (a) and (b), with boat at rest in the water and maximum load aboard. Subtract (b) from (a) to find (c). If (c) is less than specified in chart, boat construction must be altered to properly lower waterline relative to exhaust chamber.

- **a** - From Waterline to Top of Transom
- **b** - From Highest Point on Expansion Chamber to Top of Transom
- **c** - (a) minus (b) = (c)
- **d** - Waterline at Rest (at Maximum Load)

<table>
<thead>
<tr>
<th>Model</th>
<th>c = (a) minus (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Drive</td>
<td>(c) must be 203 mm (8 in.) or more.</td>
</tr>
</tbody>
</table>

Fuel Delivery System

![Diagram](image)

WARNING
Boating standards (NMMA, ABYC, etc.), federal standards and U.S. Coast Guard regulations for INBOARD engines must be adhered to when installing fuel delivery system. Failure to comply could result in severe personal injury or death.

CAUTION
Remove plastic plug from fuel inlet fitting. Attach fuel line to fuel fitting with U.S. Coast Guard approved hose clamp. Inspect for fuel leaks.

1. Fuel pickup should be at least 25 mm (1 in.) from the bottom of the fuel tank to prevent picking up impurities.
2. Fuel lines used must be U.S. Coast Guard approved (USCG type A1), *fittings and lines must not be smaller than 8 mm (5/16 in.) I.D.*
3. On installations requiring long lines or numerous fittings, larger size lines should be used.
4. Fuel line should be installed free of stress and firmly secured to prevent vibration and/or chafing.
5. Sharp bends in fuel line should be avoided.
6. A flexible fuel line must be used to connect fuel line to engine fuel pump to absorb deflection when engine is running.

7. A primer bulb is not necessary with this application. If a primer bulb is used, it must be U.S. Coast Guard approved for inboard engine installations.

8. Vapor separator must be vented to fuel tank. Vent hose must comply with U.S. Coast Guard/ABYC regulations.

Instrumentation

CAUTION

If a fused accessory panel is to be used, it is recommended that a separate circuit (properly fused) be used from the battery to the fuse panel with sufficient wire size to handle the intended current load.

NOTE: Check the charging capability of the engine. The electrical load of the boat should not exceed this capacity.

We recommend the use of Mercury Precision or Quicksilver Instrumentation and Wiring Harnesses. Refer to Mercury Precision Parts Accessories Guide for selection.

If other than Mercury Precision or Quicksilver electrical accessories are to be used, it is good practice to use waterproof ignition components (ignition switch, lanyard stop switch, etc.). A typical jet boat of this nature will see water splashed on these components. Therefore, precautions must be taken to avoid ignition failure due to shorting out of ignition components.

WARNING

Sudden stopping of engine (shorting ignition components) while boat is underway will cause loss of steering control due to loss of thrust. This loss of steering control may cause property damage, personal injury or death.

A warning horn must be incorporated in the wiring harness (see wiring diagram) to alert the user of an overheat, low oil condition or oil pump failure.

IMPORTANT: If a warning horn system is not installed by the boat manufacturer, Mercury Marine will not honor any warranty claims for engine damage as a result of overheating or lack of engine oil.

Route instrumentation wiring harness back to engine, making sure that harness does not rub or get pinched. If an extension harness is required, be sure to secure connection properly. Fasten harnesses to boat at least every 460 mm (18 in.), using appropriate fasteners.
Wiring Diagrams

Instrumentation, Typical Analog Installation Shown

NOTE: Refer to gauge manufacturer's instructions for specific connections.

a - Temperature Gauge
b - Key Switch
c - Tachometer Gauge
d - Emergency Stop Switch
e - Tachometer Harness (P/N 84-86396A8) (Not Included With Key/Choke Harness Kit)
f - Connect Wires Together With Screw and Hex Nut (2 Places) Apply Quicksilver Liquid Neoprene to Connections and Slide Rubber Sleeve Over Each Connection.
g - To Neutral Start Safety Switch In Remote Control Box
h - Speedometer Gauge
i - Overheat/low oil horn

Liquid Neoprene
Dielectric Grease
Typical System Layouts – Single Engine Product Configurations
SmartCraft Speedometer and Tachometer

![Diagram of SmartCraft Speedometer and Tachometer]

SmartCraft System Monitor – Model Year 2001 and Newer

![Diagram of SmartCraft System Monitor]

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Part Number</th>
<th>Description</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>879982T</td>
<td>Wiring Harness SC1000-2RSL (20,30 ft)</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>879896K2</td>
<td>System Monitor – Front Mount (Outboard Only)</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>879896K1</td>
<td>System Monitor – Rear Mount (Outboard Only)</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>879896K4</td>
<td>System Monitor 2 – Front Mount (All Models)</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>879896K3</td>
<td>System Monitor 2 – Rear Mount (All Models)</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>881931A1</td>
<td>Depth Transducer – Transom Mount</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>881932A1</td>
<td>Depth Transducer – In Hull</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>881933A1</td>
<td>Depth Transducer – Through Hull</td>
<td>1</td>
</tr>
</tbody>
</table>
Remote Control and Cables

The remote control must provide the following required features:

- Start-in-gear protection
- Neutral RPM limit at 2,000 RPM
 Note: This applies to dual lever remote controls as well as single lever remote controls.
- High strength mechanism to accommodate loads transmitted to the remote control
- Shift cable travel of 76 mm ± 3 mm (3 inches ± 1/8 in.).
- Ability to use 40 series shift cable

The remote control must meet the above criteria as well as the design criteria outlined in the ABYC manual pertaining to Mini-Jet Boats (Standard P-23).

SHIFT CABLE

The shift cable to be used MUST MEET the following criteria:

- 40-Series Cable
- 40 Series bulkhead fitting at output end
- Allow for a minimum of 76 mm (3 in.) of travel.
- A means of attaching and locking the cable to the shift cable bracket (provided).
- Cable end at pump must allow for a 1/4 inch clevis pin and cotter pin (all provided) to connect cable to the reverse gate.
- Protected against water intrusion and/or corrosion as the cable end (at the pump) is submerged in water with the boat at rest.

The shift cable end (at the pump) is submerged in water. It should be sealed against water intrusion, protected against corrosion and be able to withstand the shift loads imparted on it by the reverse gate.

Follow shift cable adjustment procedure for proper adjustment.

THROTTLE CABLE

The throttle cable must have one end compatible with the control box. The other end must have Mercury style connectors.

Follow throttle cable adjustment procedures for proper adjustment.
The pump to powerhead opening in the hull is the most important factor to consider in a Jet Drive installation. There are three areas of concern:

1. Location (a) of the pump to powerhead hull opening relative to the boat bottom for proper ride plate seal fit.

2. Dimensional control of the opening - corner radii (b), straightness (c) and size (d) for proper grommet installation, and corner radii (e) for ride plate seal fit.

3. Flatness and thickness of the area around the hull opening for proper grommet sealing (see drawing on next page).

4. The hull opening must have a 0.125 in. radius on both the top and bottom corners all around the opening.

Tunnel Dimensions (in inches)

- **a** - Location
- **b** - Corner Radii
- **c** and **d** - Size and Straightness
- **e** - Corner Radii for Ride Plate
Steering Helm and Cable

STEERING HELM

The steering helm must limit steering cable travel to 88.9 ± 2.5 mm (3-1/2 in. ± 1/8 in.).

⚠️ WARNING

Failure to limit steering cable travel at the helm could pre-load the cable resulting in premature failure of a steering component causing loss of steering. This loss of steering could cause property damage, personal injury or death.

STEERING CABLE

The steering cable to be used MUST MEET the following criteria:

- 60 Series Steering Cable
- 60 Series bulkhead fitting at output end
- Allow for a minimum of 95.3 mm (3.75 in.) of travel.
- Cable end at pump must allow for a 5/16 in. threaded adaptor shouldered thru-bolt and lock nut to connect the cable to the steering arm.
- A means of attaching and locking the cable to the steering cable bracket (provided).
- Protected against water intrusion and/or corrosion as the cable end (at the pump) is submerged in water with the boat at rest.
- The steering cable should be able to withstand the steering loads imparted on it by the rudder.

A locking tab is provided by Mercury to be used with the steering cable having threads and locknuts located 287 mm (11.31 in.) from cable end at pump with cable at center of travel.

Follow steering cable adjustment procedure for proper adjustment.

METHOD FOR CONTROLLING LOCATION AND SIZE

Mercury Marine recommends that the tunnel opening be done as a part of the manufacture of the tunnel. This will ensure consistency of location as well as size.
Installing Jet Pump

Hull Cutout

CAUTION

The hull opening dimensions are critical for proper sealing between Jet Pump and boat. Measure cutout thickness and overall dimensions before attempting a Jet Pump installation.

1. Install tunnel grommet in cut-out of boat by gluing front portion of grommet to tunnel with Loctite 454 or equivalent. Avoid gluing flexible sealing lips to tunnel.

 a. Glue Front Portion of Grommet
 b. Avoid Gluing Flexible Sealing Lips to Tunnel
 c. Loctite 454

NOTE: The procedure for gluing the grommet is not required for the following grommets:
 - Part Number 820663-250 (1/4 in grommet)
 - Part Number 820663-375 (3/8 in grommet)
 - Part Number 882811 (3/8 in grommet)

2. Install steering and shift through hull bellows assemblies. Tighten securely.

 a. Bellows
 b. Clamp
 c. Nut
 d. Through Hull Fitting
3. Route steering cable through the through hull fitting and bellows. Route cable through the port side hole in flange of pump housing. Install nut on cable before routing cable through wear ring.

![Diagram showing a and b]

- **a** - Shift Cable
- **b** - Wear Ring

4. Install tab washer and nut on cable after guiding through wear ring. Locate tab washer in tab hole. Coarse cable adjustment is made using these nuts. Do not tighten until after final steering adjustment is made.

![Diagram showing a, b, c, and d]

- **a** - Tab Hole
- **b** - Nut
- **c** - Tab Washer
- **d** - 6.4 mm (0.25 in.)
5. Route shift cable through the through hull fitting and bellows. Route cable through the starboard side hole in flange of pump housing.

IMPORTANT: Ensure that the shift lever in the control box is set for 76 mm (3 in.) of travel.

NOTE: It is easier to adjust the shift and steering cables before installing pump unit in boat.

6. Spray soapy water on inside surface of tunnel grommet and ride plate seal.

NOTE: When installing pump in tunnel, be sure cables are below tunnel grommet flange on pump to prevent pinching of cables between pump and boat.
7. Install jet pump (a) by pushing unit through opening in tunnel grommet. Ride plate seal should fit snug in boat tunnel without any gaps along perimeter.

NOTE: Before torquing fasteners, check ride plate seal for proper fit in tunnel.

8. Install gasket, o-ring, and cover on jet pump. Align holes in cover with studs in housing and secure with four (4) M10 x 1.5 nuts. Check ride plate seal for proper fit in tunnel and torque housing cover nuts to 47 Nm (35 lb ft).

9. Check steering and shift cables for freedom of movement. Correct installation if cables are pinched.

10. Attach flush hose to fitting and secure with hose clamp. Failure to secure hose will allow water to fill boat. Refer to page 25 for completing the installation of the flushing kit.

a - Jet Pump
b - Tunnel Grommet

NOTE: Before torquing fasteners, check ride plate seal for proper fit in tunnel.

8. Install gasket, o-ring, and cover on jet pump. Align holes in cover with studs in housing and secure with four (4) M10 x 1.5 nuts. Check ride plate seal for proper fit in tunnel and torque housing cover nuts to 47 Nm (35 lb ft).

9. Check steering and shift cables for freedom of movement. Correct installation if cables are pinched.

10. Attach flush hose to fitting and secure with hose clamp. Failure to secure hose will allow water to fill boat. Refer to page 25 for completing the installation of the flushing kit.

a - M10x1.5 Nuts (4)
b - Cover and Gasket
c - Attach Flush Hose to Fitting with Hose Clamp
Steering Cable Adjustment

1. Slide bellows assembly over cable and thread on cable completely. Do not tighten.
2. Route cable through hull fitting after routing through bellows.
3. Thread cable end adaptor (a) on steering cable 14 turns (to allow for adjustment).

WARNING

Cable end adaptor must be installed a minimum of nine (9) turns. Failure to install cable end adaptor on steering cable a minimum of nine (9) turns could result in loss of steering control of boat, personal injury, or death.

4. Center rudder assembly on nozzle.
5. Center steering wheel by turning wheel lock to lock and positioning wheel midway between locks.
6. Adjust cable end adaptor until thru-hole in adaptor lines up with threaded hole in steering arm. This is the steering cable fine adjustment. Cable end adaptor **MUST** be installed on steering cable a minimum of nine (9) turns.

7. Attach steering cable to steering arm with bolt, washer and locknut. Torque nut to 7.9 Nm (70 lb in.).

8. Tighten cable nuts (f).

9. Check steering adjustment to ensure that the helm limits cable travel for maximum left and right turns. Correct if required.

10. Secure cable nut with tab washer by bending a tab over flat of hex nut.

Diagram Key:
- **a** - Bellows Nut
- **b** - Steering Arm
- **c** - Bolt
- **d** - Lock Nut
- **e** - Flat Washer
- **f** - Cable Nuts
11. Apply perfect seal to end threads and cable conduit end.

![Perfect Seal Image]

12. Turn bellows nut out and tighten against cable end adaptor.

13. Turn rudder to port to compress bellows as much as possible. Pull bellows over cable conduit and secure with bellows clamp.

![Steering Cable, Thru-Hull Fitting, and Bellows Assembly Diagram]

- a - Steering Cable, Thru-Hull Fitting, and Bellows Assembly
- b - Thru-Hull Fitting and Nut
- c - Clamp
- d - Bellows
- e - Slit Adaptor
Shift Cable Adjustment

IMPORTANT: The shift cable MUST BE properly adjusted. The shift cable is adjusted so that the reverse gate is not pre-loaded against either the forward or reverse stop. Pre-load in either position may cause failure of the stop and/or premature wear of the shift cable or control box components. It may also cause stiffness of the throttle control.

1. Thread the cable barrel onto the shift cable.

2. Use a de-greaser and clean off all oil film from the area on the shift cable shown.

 NOTE: Removing the oil film from the shift cable is necessary to prevent the bellows from sliding on the cable.

3. Slide the bellows over the shift cable end. Position and install the bellows onto the cable conduit as shown. Fasten ends with clamp and cable tie.

 a - Cable Barrel
 a - Remove Oil Film From This Area
 a - Bellows
 b - Clamp
 c - Cable Tie
4. Loosen the lock nuts and unfasten the top end of the shift cable retainer.

 NOTE: Locknuts do not have to be removed to open retainer.

 ![Diagram showing the shift cable retainer and plastic barrel holder.](image)

 a - Shift Cable Retainer
 b - Plastic Barrel Holder

5. Install shift cable end in slot of the reverse gate and secure with clevis pin, flat washer, and cotter pin. Bend over ends of cotter pin.

 ![Diagram showing the clevis pin, flat washer, and cotter pin.](image)

 a - Clevis Pin
 b - Flat Washer
 c - Cotter Pin

WARNING

The shift cable must be adjusted correctly so that the reverse gate does not interfere with water flow coming out of the rudder. If the reverse gate hangs down into the water flow, a vibration may be felt in the control box. If this occurs, reduce throttle immediately and readjust the cable. Improper adjustment may result in pump damage including loss of the reverse gate. Failure to properly adjust the shift cable could result in loss of neutral and reverse, property damage, personal injury or death.
6. Adjust shift cable as follows:
 a. Position the control box into forward position.
 b. Position the reverse gate against the forward stop. With the reverse gate at this position, adjust the cable barrel to fit into the barrel holder with slight tension of the reverse gate against the stop.
 c. After adjusting the shift cable, secure the cable barrel in place with the shift cable retainer. Fasten the retainer by tightening both locknuts.

 IMPORTANT: The shift cable retainer must be fastened with self locking nylon insert locknuts. These locknuts must never be replaced with common nuts (non locking) as they could vibrate off, freeing the shift cable to disengage.

 WARNING

 Disengagement of the shift cable can result in the boat suddenly shifting into reverse. This unexpected action could cause occupants to be thrown forward in the boat or to be ejected overboard. Serious injury or death could result.

7. Adjust the reverse stop (located on starboard side of the nozzle) so that the stop just touches the reverse gate with the control handle in reverse position. Torque reverse stop screw to 14 Nm (120 lb in.).

8. Check shift cable/reverse gate adjustment as follows:
 a. Shift the control box a few times from the forward position to reverse position.
 b. Return the control handle back to forward. Pull back on the reverse gate gently to take slack out of the cable. Check for the 9.5 to 12.7 mm (3/8 to 1/2 in.) clearance space between the reverse gate and rudder. If necessary, readjust the cable barrel.
9. Seal the thru-hull fitting to prevent any water leaks.

Bilge Siphon Feature

The Jet Drive incorporates an automatic bilge siphoning feature. The bilge siphon is working whenever the engine is running above idle speeds. Maximum performance of the bilge siphon is realized above 3,000 RPM. A hose is attached to the jet pump nozzle. The hose is routed to the engine compartment and placed in the bilge. Water exiting the nozzle creates a suction or vacuum in the hose creating the bilge siphon, drawing water out of the boat.

Installing Bilge Siphon

Uncoil siphon hose from exhaust manifold. Place siphon hose in bilge.

The siphon break must be located above the water line at the highest point (cable tie). The siphon break has a 0.020 in. hole which must be kept open.

WARNING

Failure to locate siphon break above the water line and keep hole open could result in water entering the bilge through the siphon system causing property damage, personal injury or death.
Water By-Pass System

The water by-pass system is designed to improve powerhead cooling at idle speed.

1. Locate the water by-pass components (provided).

 ![Diagram]

 a - Thru-Hull Fitting
 b - Brass Nut
 c - Hose Clamp

IMPORTANT: The thru-hull fitting must be correctly positioned in the boat transom as instructed in Step 3.

2. Cut the cable tie and uncoil the water by-pass hose.

 ![Diagram]

 a - Water By-Pass Hose

3. Select the mounting location for the thru-hull fitting as follows:

 ![Diagram]

 - The thru-hull fitting must be mounted in either side of the transom within the zones marked A.
 - The thru-hull fitting must be located a Minimum of 50 mm (2 in.) above the water line when boat is at its maximum load capacity.
 - The water by-pass hose must slope down towards the thru-hull fitting at a minimum rate of 25 mm (1 in.) drop per 1300 mm (2 in.) of hose.
 - The thru-hull fitting should be positioned so the water spray will be pointed downward.
4. After the location has been selected for the thru-hull fitting, drill a 14.3 mm (9/16 in.) diameter hole.

5. Apply Marine Sealer to entire length of threads and under the head of the thru-hull fitting. Fasten the fitting into the transom with the brass nut (provided).

6. Connect the water by-pass hose to the thru-hull fitting with the hose clamp (provided). Make sure the hose slopes at a minimum rate of 25 mm (1 in.) drop per 300 mm (12 in.) of hose.

- Thru-Hull Fitting
- Brass Nut
- Marine Sealer

- Hose Clamp
- Water By-Pass Hose
Installation of Flushing Kit

1. Attach flush hose to fitting and secure with hose clamp. Failure to secure hose will allow water to fill boat.

 a - M10x1.5 Nuts (4)
 b - Cover and Gasket
 c - Attach Flush Hose to Fitting with Hose Clamp

2. Attach one end of hose to flush adapter. Secure with clamp as shown.

 ![Diagram of flush hose and bracket installation]

 CAUTION
 BEFORE mounting flush adapter bracket, route adapter and hose to selected mounting location. Hose routing MUST NOT INTERFERE with throttle and/or control linkage.

 NOTE: Mount flush adapter bracket in area of motor compartment that has mounting surface thicker than depth of mounting bracket screws.

3. Locate area (easily accessible) within motor compartment to mount flush adapter bracket. Secure bracket to mounting surface with three screws supplied.

 a - Mounting Surface
 b - Bracket
 c - Screw (3)
4. Snap flush adapter into bracket as shown.

![Diagram](image)

- **a** - Bracket
- **b** - Flush Adapter

Operation Instructions

WARNING

DO NOT run engine on flushing kit above idle speeds. Damage to engine from overheating, due to lack of water supply may occur.

1. With "engine off", remove flush adapter plug and attach water hose.

![Diagram](image)

- **a** - Flush Adapter
- **b** - Water Hose

2. Turn water hose "on" and flush engine block for a minimum of ten minutes.

3. Remove water hose from flush adapter and install adapter plug. Tighten plug securely. Place flush adapter into adapter bracket.
4. Flush outer surfaces of water outlet nozzle.

Suggested Flushing Intervals

- After running jet in salt water environment
- Where boat was operated in shallow water or run aground
- Overheat warning horn sounds (May be caused from accumulation of particles/debris in jet powerhead)

⚠️ CAUTION ⚠️

If any of the above conditions are not corrected with normal flushing of engine, it is recommended that the jet be taken to your authorized dealer for service.
Installing Powerhead

1. Install gasket on drive housing cover. Ensure sealing bead is facing down towards drive housing cover.
2. Install two (2) O-rings.
3. Check that slinger is on driveshaft.
4. Lubricate driveshaft splines with Special Lubricant 101.

```
a - Gasket, with Sealing Bead Facing Down
b - Drive Housing Cover O-Ring
c - Drive Shaft O-Ring
d - Lubricate drive shaft splines with Special Lubricant 101
```

5. Lower powerhead on drive housing cover. Align driveshaft splines with crankshaft splines, and powerhead mounting studs with adapter plate holes.

6. Secure powerhead to drive housing cover with eleven (11) M10 x 1.5 nuts. Torque fasteners to 27 Nm (20 lb ft) following the torque sequence given. Repeat torque sequence, torquing fasteners to 47 Nm (35 lb ft).

```
a - M10 x 1.5 Nuts, Torque to 47 Nm (35 lb ft)
```
200 AND 240 HP MODELS

7. Connect fuel line to fuel inlet fitting, secure with U.S. Coast Guard approved hose clamp (183.532).

8. Vapor separator tank (VST) must be vented to fuel tank (200/240 hp). Vent hose must comply with U.S. Coast Guard/ABYC regulations.

210 HP MODEL

9. Connect fuel line to fuel inlet fitting, secure with U.S. Coast Guard approved hose clamp (183.532).
Battery Cables and Remote Harness Connections

240 HP MODELS

WARNING

U.S. Coast Guard regulation #33 CFR 183.445 requires that the “positive” battery cable connection at the starter solenoid terminal be protected by either a boot or protective shield.

NOTE: Engine electrical system is negative (−) ground.

1. Slide the protector boot (provided) onto the positive (+) battery cable.

 ![Diagram](image)

 a - Positive Battery Cable
 b - Protector Boot

 NOTE: Engine electrical system is negative (−) ground.

2. Fasten the positive (+) battery cable to the starter solenoid (+) terminal. Seal connection with Liquid Neoprene. Push the protector boot over the connection.

3. Fasten the negative (−) battery cable to engine grounding bolt located on the engine block below the starter motor. Seal connection with Liquid Neoprene.

4. Connect battery cables to battery. Make sure that all battery terminal connections are tight; then, spray terminals with a battery connection sealant to help prevent corrosion.

5. Attach the remote wiring harness to the engine plug. Place harness plug into holder.

 ![Diagram](image)

 a - Positive Battery Cable Attaching Location – Push the Protector Boot over the Connection
 b - Negative Battery Cable Attaching Location (Engine Ground)
 c - Remote Wiring Harness Connection – Place Connection into Holder
Battery Cables and Remote Harness Connections

200 HP MODELS

WARNING

U.S. Coast Guard regulation #33 CFR 183.445 requires that the “positive” battery cable connection at the starter solenoid terminal be protected by either a boot or protective shield.

NOTE: Engine electrical system is negative (–) ground.

1. Slide the protector boot (provided) onto the positive (+) battery cable.

 ![Diagram](image)

a - Positive Battery Cable
 b - Protector Boot

NOTE: Engine electrical system is negative (–) ground.

2. Fasten the positive (+) battery cable to the starter solenoid (+) terminal. Seal connection with Liquid Neoprene. Push the protector boot over the connection.

3. Fasten the negative (–) battery cable to engine grounding bolt located on the engine block below the starter motor. Seal connection with Liquid Neoprene.

4. Connect battery cables to battery. Make sure that all battery terminal connections are tight; then, spray terminals with a battery connection sealant to help retard corrosion.

5. Attach the remote wiring harness to the engine plug. Place harness plug into holder.

 ![Diagram](image)

a - Positive Battery Cable Attaching Location – Push the Protector Boot over the Connection
 b - Negative Battery Cable Attaching Location (Engine Ground)
 c - Remote Wiring Harness Connection – Place Connection into Holder
Battery Cables and Remote Harness Connections

210HP MODEL

WARNING

U.S. Coast Guard regulation #33 CFR 183.445 requires that the “positive” battery cable connection at the starter solenoid terminal be protected by either a boot or protective shield.

NOTE: Engine electrical system is negative (–) ground.

1. Slide the protector boot (provided) onto the positive (+) battery cable.

 ![Diagram](a-b.png)

 a - Positive Battery Cable
 b - Protector Boot

NOTE: Engine electrical system is negative (–) ground.

2. Fasten the positive (+) battery cable to the starter solenoid (+) terminal. Seal connection with Liquid Neoprene. Push the protector boot over the connection.

3. Fasten the negative (–) battery cable to engine ground at forward starter motor bolt. Seal connection with Liquid Neoprene.

4. Connect battery cables to battery. Make sure that all battery terminal connections are tight; then, spray terminals with a battery connection sealant to help retard corrosion.

5. Attach the remote wiring harness to the engine plug. Place harness plug into holder.

![Diagram](a-b-c.png)

 a - Positive Battery Cable Attaching Location – Push the Protector Boot over the Connection
 b - Negative Battery Cable Attaching Location (Engine Ground)
 c - Remote Wiring Harness Connection – Place Connection into Holder
Throttle Cable
Installation

1. Position remote control into neutral.
2. Attach throttle cable to the throttle lever. Secure with washer and locknut.

![Diagram](57837)

- Washer and Locknut – Tighten locknut and back off 1/4 turn

3. Adjust the cable barrel so that the installed throttle cable will hold the idle stop screw against the stop.

![Diagram](57838)

- Cable Barrel – Adjust To Hold Idle Stop Screw Against Stop
- Idle Stop Screw

4. Check throttle cable adjustment as follows:
 a. Move throttle from idle to wide open several times to activate throttle linkage.
 b. Return throttle to neutral. Place a thin piece of paper between idle adjustment screw and idle stop. Adjustment is correct when the paper can be removed without tearing, but has some drag on it. Readjust cable barrel if necessary.

IMPORTANT: The idle stop screw must be touching the stop.

![Diagram](57839)

- Idle Stop Screw
- Idle Stop

5. Lock the barrel holder in place with the cable latch.
Oil Injection Set-Up

210 hp models

1. Mount the oil reservoir in a suitable location. Use the oil tank hold down kit provided.

2. Oil hoses must be arranged so they cannot become pinched, kinked, sharply bent or stretched during operation of the engine.

3. Remove (and discard) the shipping cap from hose fitting.

4. Connect oil hose from remote oil tank (hose with blue stripe) to hose fitting. Secure with cable tie.

 NOTE: The fitting barb on the vent does not get connected to a hose.

5. Remove (and discard) shipping cap from pulse fitting.

6. Connect the second oil hose from remote oil tank to pulse fitting. Secure with cable tie.

 ![Diagram with labels]

 a - Hose Fitting
 b - Vent
 c - Pulse Fitting
7. Fill remote oil tank with the recommended oil listed in the Operation and Maintenance Manual. Tighten fill cap.

8. Remove fill cap from the engine oil tank and fill the tank with oil. Reinstall the fill cap.

9. Loosen the fill cap on the engine mounted oil tank. Run the engine until all the air has been vented out of the tank and oil starts to flow out of the tank. Re-tighten fill cap.

a - Engine Oil Tank
b - Fill Cap
Oil Injection Set-Up

200 and 240 hp models

1. Mount the oil reservoir in a suitable location. Use the oil tank hold down kit provided.

![Oil reservoir diagram]

2. Oil hoses must be arranged so they cannot become pinched, kinked, sharply bent or stretched during operation of the engine.

3. Remove shipping cap from oil filter and connect oil hose (with blue stripe) to filter with cable tie.

![Diagram showing oil hose and filter]

- Oil Hose (with Blue Stripe)
- Oil Filter

4. Remove shipping cap from fitting and connect oil hose (without blue stripe) to fitting with cable tie.

![Diagram showing oil hose and fitting]

- Oil Hose (without Blue Stripe)
5. Fill remote oil tank with the recommended oil listed in the Operation and Maintenance Manual. Tighten fill cap.

6. Remove fill cap and fill engine oil tank with oil. Reinstall the fill cap.

7. All Mercury Jet Drive powerheads have the oil systems primed. To determine if repriming is necessary, check the clear oil line between the engine oil reservoir and the oil pump. If there are no air bubbles in the line, it is not necessary to reprime the oil system. If air bubbles are present, it will be necessary to reprime the system using the Digital Diagnostic Terminal (DDT). This method fills the oil pump, oil supply hose feeding pump, and oil hoses going to the vapor separator. Refer to procedure in the Technician Reference Manual provided with the Digital Diagnostic Software Cartridge Part. No. 91-880118.

8. Loosen the fill cap on the engine oil tank.

9. Start the engine. Run the engine until all the air has been vented out of the tank and oil starts to flow out of the tank. Re-tighten fill cap.
Trim Plate Adjustment

The Jet Drive unit trim plate is factory set for general applications. Should a particular boat experience porpoising problems, the trim plate can be adjusted as follows:

1. Loosen both jam nuts on trim plate (one starboard and one port).

2. Turn both screws the exact same number of turns. Tighten both jam nuts against trim plate. The distance from top of nut to bottom of boss should be equal on both sides.

WARNING

Adjusting the trim plate may affect boat handling (steering). Overly sensitive steering or reduced turning ability could result from trim plate adjustments. Boat handling characteristics also vary with the load distribution in the boat. Use caution after adjusting: check for acceptable handling characteristics under all loading conditions. Failure to adequately test the boat could result in inadequate steering control resulting in property damage, personal injury or death.
Exhaust System Installation

General Exhaust System Notes

1. Exhaust system application must meet ABYC standard P-1 for marine exhaust installations.
2. The entire exhaust system must meet 1309.99 kPa (190 psi) burst pressure.
3. All rubberized exhaust system components must meet SAE J-2006 standards for marine exhaust hoses.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mufflers must be secured in such a way as to prevent muffler movement during inadvertent engine backfire. Movement of mufflers may result in exhaust hose loosening which could cause boat sinking due to water intrusion.</td>
</tr>
</tbody>
</table>

4. The mufflers and exhaust hoses must be adequately supported for proper orientation and to prevent overstressing the exhaust components. The support requirements will vary with exhaust system design and the amount of G-forces to be encountered.
5. Rubber hose should be connected to pipes with flares or beads or barbs to prevent the hose from sliding off the pipe under pressure.
6. For additional exhaust system recommendations, see MERCURY spec. 90-884386 which covers all jet drive exhaust applications not covered under these guidelines.

Exhaust Outlet Measurement Procedure

1. Fill all fuel, oil and water tanks to maximum capacity.
2. Add maximum allowable cargo weight to boat in areas where it will be stored.
3. Add 86 kg (190 lbs) of weight in all locations where each passenger will sit during normal operation.
4. Using diagrams provided (following), measure to ensure location of muffler outlets.
5. Move load weight and cargo weight to stern of boat to simulate greatest stern down attitude the boat will encounter such as when loading.
6. Recheck muffler outlet measurements.
7. Check exhaust system slope to ensure 5° down hill slope.
a - **200/240 hp** – 878147-A1 Muffler Assembly, Port [22.8 cm (9.0 in.)] with 7.6 cm (3.0 in.) Outlet

210 hp – 859388A1 Muffler Assy, Port [22.8 cm (9.0 in.)] with 6.4 cm (2.5 in.) Outlet

b - Connection Piping between Expansion Chamber and Muffler must be made of 3.0 in (7.6 cm) O.D. Tubing. Tubing must be either 5052 or 6061 (14 ga) aluminum or type 304 (14 ga) stainless steel to protect against corrosion.

c - 57885-A1 Flange Assembly (2 required) or equivalent through transom fittings may extend 12.7 cm (5 in.) below water line for quiet idle operation. Exhausting under a swim platform or other horizontal surface may cause transmission of noise and vibration to the boat during operation.

d - **200/240 hp** – 878148-A1 Muffler Assy, Starboard [22.8 cm (9.0 in.)] with 7.6 cm (3.0 in.) Outlet.

210 hp – 859389A1 Muffler Assy, Starboard [22.8 cm (9.0 in.)] with 6.4 cm (2.5 in.) Outlet
a - Alternate Installation – If rubber hosing is to be used for connection between the expansion chamber and the muffler, a inner sleeve made of 6061-T6, 14 ga. aluminum tubing must be used as liner and secured with 2 stainless steel hose clamps p/n 54-815504 or equivalent.

b - Typical Recommended Installation – 54-815504 256 stainless steel clamp or equivalent. All exhaust hoses and/or tubes must be secured with 2 clamps at each connection.

c - Mufflers may be mounted using straight piping.

d - 25° outlet angle of expansion chamber.

e - 15.2 cm (6.0 in.) minimum.

f - Reference maximum practical.

g - 25° maximum from horizontal.

h - Optional exhaust outlet cover.

i - 5.1 cm (2.0 in.) minimum.

j - 10.2 cm (4.0 in.).

k - To minimize the back flow of exhaust gases into the cockpit or interior of boat, the exhaust termination should be located as far outboard of the centerline as practical.

l - Final system installation shall be reviewed by a MERCURY Field Representative using a modified expansion chamber to ensure back pressure does not exceed 10.3 kg (1.5 psi) at 304.8 cm (1000 ft) above sea level or less. This test needs to be performed with the boat in the water and under way. No special loading of the boat is required. However, the engine must be capable of reaching the specified W.O.T. engine speed. Maximum RPM must be verified using an accurate service tachometer.

m - Exhaust system components should be rubber mounted, independently supported and restrained to minimize noise transmission to the boat and stress on exhaust system components.

n - 10° minimum angle from expansion chamber outlet to muffler inlet.
a - This line represents the bottom edge of the muffler outlet tube. Measure to ensure that the lowest possible location of the bottom edge of the muffler tubes never gets within 5.1 cm (2.0 in.) of the maximum depth waterline.

b - 5.1 cm (2.0 in.). When installing muffler assemblies, a 5.1 cm (2.0 in.) minimum distance between bottom of muffler and water line must be kept. This minimum distance must be calculated with boat under its maximum load. Tilt muffler assemblies back towards outlet to ensure self-draining.

c - Water Line

d - Covers may be placed over exhaust outlets to reduce exhaust noise and may extend 5 in (10 cm) or less below waterline when boat is at rest.

e - 5.1 cm (2.0 in.).

f - 5° outlet angle.
a - A spacer must be used with all 7.6 cm (3.0 in.) tube applications. A spacer having a 6.73 cm (2.65 in.) I.D. and a 7.6 cm (3.0 in) O.D. needs to be installed over the expansion chamber outlets.
Pre-delivery Inspection

Not Applicable	Check/Adjust	CHECK BEFORE RUNNING	
----------------	--------------	----------------------	
❑		Water hose connection/torqued	❑
❑		Cover plate & adaptor plate fasteners torqued	❑
❑		Battery meets engine specification	❑
❑		Battery charged & secure	❑
❑		All electrical connections tight	❑
❑		All fuel connections tight	❑
❑		Throttle, shift, & steering adjusted correctly and fasteners torqued	❑
❑		Shift cable adjusted to keep reverse gate above rudder in forward w/ slack pulled out of cable and against the stop.	❑
❑		Pump housing oil level full (See Owner’s Manual)	❑
❑		Oil injection reservoir full and bled	❑
❑		Warning system operational	❑
		Idle:____________RPM	❑
		Idle mixture adjusted	❑
		Forward-Neutral-Reverse operational	❑
		Steering operational throughout entire range	❑
		Acceleration test	❑
		WOT:____________RPM	❑
		Boat handling	❑

POST WATER CHECK

- Re-torque adapter plate fasteners
- No fuel, oil, water or exhaust leaks
- Re-check shift cable adjustment. Readjust as necessary

ON THE WATER CHECK

- Starter neutral safety switch operational
- Lanyard stop switch operational
- All gauges read properly
- No fuel or oil leaks
- No water leaks
- No exhaust leaks
- Ignition timing set to specs